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ABSTRACT 
In this paper, we explore how shape changing interfaces 
might be used to communicate emotions. We present two 
studies, one that investigates which shapes users might 
create with a 2D flexible surface, and one that studies the 
efficacy of the resulting shapes in conveying a set of basic 
emotions. Results suggest that shape parameters are 
correlated to the positive or negative character of an 
emotion, while parameters related to movement are 
correlated with arousal level. In several cases, symbolic 
shape expressions based on clear visual metaphors were 
used. Results from our second experiment suggest 
participants were able to recognize emotions given a 
shape with a good accuracy within 28% of the dimensions 
of the Circumplex Model. We conclude that shape and 
shape changes of a 2D flexible surface indeed appear able 
to convey emotions in a way that is worthy of future 
exploration. 
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INTRODUCTION 
In industrial design, the shape of a product has long been 
associated with the communication of emotion [33]. 
Psychologists have studied the emotional responses to the 
perception of shape for decades [19,38]. One consistent 
finding has been that humans tend to prefer rounded 
objects over sharp ones [4,29]. The advent of flexible 
displays has now given rise to computational objects that 
can be designed to fit such different form factors [24]. 
E.g., flexible smartphones [15,26] that use displays that 
can be deformed to alter their shape. Amongst others, this 

has been shown to be useful for navigating contents 
through bend gestures [6,26]. Shape changes can also be 
actuated, for example, to notify users of an incoming 
message through a screen deformation [15]. Shape 
changing devices have been studied in terms of their 
explicit input properties, e.g., by deforming their surface 
to alter the shape of a 3D model [14]. Shape changing 
devices have also been designed and studied in terms of 
their visual and haptic communication properties 
[3,14,20,35,36]. These explorations range from 
communication of simple explicit information, such as a 
notification [15], to more complex and subtle information, 
such as communicating an emotion [10]. Many studies 
suggest that textual online communication lacks 
emotional expressivity because it does not provide 
nonverbal cues, such as facial expressions, gestures, and 
intonation [2]. If shape changes are associated with 
emotional communication, perhaps it could be used as a 
medium to enhance textual forms of communication with 
emotional expression. Recent explorations into shape 
changing interfaces have begun to explore how shapes 
might be used to output emotions [10,39,42]. However, 
the understanding of how shape input might be applied for 
emotional communication is still in its infancy. 

Contribution 
In this paper, we explore what shapes of a flexible 2D 
surface users might use to convey messages with 
emotional content to other users, through two studies. Our 
main experiment investigates what shape gestures users 
might use to communicate a set of 12 emotions. A second 
experiment investigates whether others are able to 
successfully interpret such shapes back to emotions. We 
observed the recurrent use of certain shapes to convey 
specific emotions. While the level of agreement on the 
use of those shapes varied between emotions, it was high 
for Happiness, Delight, Sadness, Love, Anger and 
Contentment. Simple elements of shape, such as curvature 
parameters and speed of deformation, are significantly 
correlated with the basic parameters, Arousal and 
Valence, that underlie emotional states. Users were able 
to interpret these shape gestures from a 3D animation of a 
flexible smartphone with reasonable accuracy. With this 
work, we hope to further demonstrate the utility of shape 
changes as a communication medium, and provide 
insights into the design space of shape changing interfaces 
for such purpose. 
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BACKGROUND 
Emotion and shape changing interfaces are a relatively 
recent topic of interest in our field [10,39]. First, we 
discuss models of emotions and embodiment, after which 
we present a summary of related work on shape changing 
interfaces. 

Valence and Arousal: The Circumplex Model of 
Emotion 
The concept of basic emotions was first introduced by 
Ortony and Turner [34]. According to them, fundamental 
emotions, such as Fear or Happiness can be viewed as 
building blocks that may be combined to produce more 
complex emotions. However, there are divergent opinions 
on the exact identity of these basic building blocks [57]. 
One set of basic emotions was based on facial expressions 
suggested by Ekman and Friesen [12]. Their set of 
emotions consisted of Anger, Disgust, Fear, Joy, Sadness 
and Surprise. These basic emotions were used by 
Bailenson et al. [3] to study the communication of 
emotions via a haptic device that conveyed a virtual 
handshake. The study highlighted the difficulty of 
conveying emotions implicitly via a technological 
medium. Only 30% of emotions were correctly identified 
by participants using their device, as compared to 50% in 
a face-to-face handshake. 

An alternative to the use of discrete categorical emotions 
was a two-parameter classification introduced by Russell 
[48]. In his Circumplex Model, Russell mapped emotions 
to a two-dimensional space: the Arousal or intensity of the 
emotion, and the Valence of the experience. Typically, the 
horizontal axis of Russell’s spatial metaphor is Valence, 
otherwise known as the pleasure—displeasure dimension. 
The vertical axis of the Circumplex Model ranges from 
highly aroused to sleeping. Emotions are distributed 
roughly equidistant from the center or neutral point, 
forming a circular shape. The Circumplex Model was 
used by Dawson et al. [10] for investigating the design 
space of a shape-changing phone. Pedersen et al. [39] also 
applied the Circumplex Model to evaluate the emotional 
response of users to visualizations of a shape changing 
phone. While the Circumplex Model proved a useful tool 
to guide the design of emotive gestures for Dawson et al., 
Pedersen et al. found little emotional impact of different 
types of shape changes using the model. 

Linking Shape and Emotion 
The thought that emotions do not just reside in the brain, 
but are embodied by and communicated through the body, 
has a long history. An important proponent of the idea 
that all aspects of cognition are shaped by aspects of the 
body is Merleau-Ponty [30]. Merleau-Ponty suggests that 
we understand emotional states of others through our own 
experience of bodily expressions [8]. More recent 
neuroscience studies on mirror-neurons provide support 
for this perspective [25]. An embodied theory of emotion 
is also supported by Lakoff & Johnson’s image schema 

[27]. According to them, dynamic mental imagery of 
bodily actions forms a basis for understanding and 
reasoning. E.g., Strack et al. [52] demonstrated that facial 
expressions not only reflect emotional states, but actively 
influence our emotional states. Various other studies 
highlight the important role of body language in our 
experience of emotions [7,51]. McDonnell et al. [30] 
studied the attribution of emotions portrayed by virtual 
renderings of a recorded human. They concluded 
perception of emotions is robust and independent of 
representation, as long as form and motion of the human 
were conveyed. Given this, it is conceivable that humans 
are also capable of relating the dynamical shape of objects 
to mirrored embodied image schemas. In this paper, we 
were interested in studying whether this result would 
persist through more abstract representations by shape 
changing devices. Park et al. demonstrated this with 
Wrigglo [35], a smartphone with appendices used for 
bilateral shape communication. They found participants 
used a language akin to body poses to transmit emotional 
states. According to Pavlova et al. [38], perceived 
dynamics of shape image schema also influence 
emotional attribution. They found a strong positive 
correlation between negative emotions and perceived 
instability of objects. They suggested that neural circuitry 
for the production of movement and understanding of 
others’ disposition are linked. 

Nonverbal Communication 
A significant portion of face-to-face communication 
consists of nonverbal behaviors [11]. The purpose of such 
nonverbal information is to convey subtleties of 
expressions that modulate symbolic messages [2]. Often, 
but not exclusively, such subtleties involve the 
communication of emotion. In face-to-face interactions, 
non-verbal cues are often communicated through shape 
transitions of the face and body, i.e. facial expressions and 
body language. Other nonverbal cues include 
paralinguistics—the tone and volume of the voice—as 
well as touch. 

It can be challenging to convey non-verbal cues in 
technologically mediated communication. While the 
conveyance of vocal paralinguistics is relatively 
straightforward over audio, facial expressions require 
video conferencing tools. However, some body language 
and touch interactions are still lost, leaving users unable 
to express certain subtleties that they are accustomed to in 
face-to-face dialogues [3]. For this purpose, researchers 
have investigated the use of haptic interfaces such as 
vibration, force and temperature changes as additional 
communication channels that can be used to transmit 
subtle non-verbal cues [5,17,46,47,53]. An example of a 
product using such non-verbal communication cues is the 
Apple Watch, which employs touch sensing with vibro-
tactile stimulation to convey nonverbal messages, 
implementing interactions suggested by Paulos [37]. 



A more commonplace method of compensating for the 
lack of nonverbals in mediated communication is the use 
of emoticons [56]. Emoticons have a long history dating 
back to 19th century Morse code, and were later 
popularized for use in emails and chat using text-based 
Internet communications [44]. Emoticons are commonly 
used for strengthening the verbal part of a message and 
for expressing humor [11]. A main drawback of 
traditional emoticons is that they represent a discrete set 
of symbols that does not involve the kind of movements 
that are so characteristic of non-verbal expression of 
emotions in face-to-face scenarios. 

Shape-changing and Malleable Interfaces 
The emergence of advanced technologies and materials 
for computer input and display have resulted in a surging 
interest in Organic User Interfaces favoring shape changes 
as input [24,50,43]. Grossmann et al. [16] demonstrated 
an input device capable of sensing deformations as a tool 
for 3D modeling. Schwesig et al. [49] presented a 
bendable computer prototype that leveraged flexibility as 
an affordance for mobile computing. Holman [23] merged 
the properties of digital media with those of physical 
paper, allowing for input and output directly on a 
windowing environment using projected flexible displays. 
More recently, PaperPhone [26] and PaperTab [54] 
investigated the effectiveness of shape changes as input 
modalities deployed on real flexible display prototypes. 

While research investigating shape changes as input has 
been extensive [16,26,49], there is also a body of work 
exploring shape changes as output. Dynamic Knobs [22] 
evaluated the concept of a rigid mockup phone capable of 
changing shape in a small extension on one of its sides. 
Hemmert et al. [21] also explored the concept of a shape-
changing device that uses two-dimensional tapering to 
display the directionality of off-screen contents. Surflex 
[9] showcased a programmable surface for the design and 
visualization of physical forms. Gomes et al. [15] 
investigated the use of changes in shape as a means to 
convey notifications in a mobile device encompassing a 
self-actuated flexible display. Similarly, Pedersen et al. 
[39] evaluated a conceptual flexible mobile device to 

ascertain how users perceive the hedonic qualities of 
shape changing interfaces. 

Shape Transitions as Communication Channels 
Changes in shape of an object can be leveraged for 
communication. inTouch [5] is an early demonstration of 
a system providing a physical link between people 
separated by distance. Poupyrev et al.’s [40] Lumen 
explored the design of an actuated pixelated information 
display. Similarly to inTouch, Lumen featured a medium 
for interpersonal communication, offering support for 
both direct user input and remote output. More recently, 
Follmer et al. [14] presented inForm, a shape changing 
rod display providing variable stiffness rendering and 
real-time user input through direct touch and tangible 
interaction. Shape transitions can also be used to 
expressed emotional traits, as proposed by Park et al., 
who demonstrated the use of shape changes as additional 
information channels for friends [35] and between lovers 
in long distance relationships [36]. 

Shape Resolution 
Rasmussen et al. explored different types of shape 
transitions [32,41]. They distinguish between 
topologically equivalent shape changes (orientation, form, 
volume, texture, viscosity, spatiality) and non-
topologically equivalent changes (adding/subtracting, 
permeability). Roudaut et al. introduced the term ‘shape 
resolution’ [45] based on the NURBS framework for 
describing shaped interactions. They defined parameters 
such as area, granularity, curvature, amplitude, porosity, 
stretchability, closure, zero crossings, strength and speed 
to describe shapes and shape changes. 

EXPERIMENT 1: USING SHAPES AS INPUT FOR 
DENOTING EMOTIONS 
To investigate whether and how shape changing user 
interfaces might be used to communicate emotional 
connotations, we studied how users might deform a 2D 
flexible substrate to convey emotional cues. Our first 
experiment studied whether users were able to 
consistently produce shapes that conveyed specific 
emotional states. Our second experiment studied whether 
users can infer the original emotional state when provided 
with such shapes. When investigating the use of shape in 
communication, we treated static and dynamic parameters 
of shape, i.e., shape changes, as a continuum. 

Rationale 
In our first experiment, we were interested in determining 
whether participants were able to create a consistent set of 
shapes that would communicate specific basic emotions 
from a set. We were also interested in determining which 
aspects of those shapes, and shape changes, were best 
suitable for communicating emotions. As such, we 
analyzed specific shape parameters, as measured by a 
deformable surface, to determine their correlation with the 
expression of Valence and Arousal: the coordinates of the 
basic set of emotions in the Circumplex Model. 

 
Figure 1. Flexible sensor apparatus used in Experiment 1. 

 



Apparatus 
Our sensor consisted of a 2D 3.5” x 5.75” 4mm thin 
flexible surface mounted with an array of 11 flex-sensors 
by Flexpoint, similar to those used in Lahey et al. [26] 
(see Figure 1). The dimensionality and 2D form factor of 
the sensor was chosen such that it could potentially be 
manufactured as a circuit sandwiched behind a flexible 
display in a flexible smartphone. The sensor allowed a 
very high degree of expressiveness when manipulated by 
the participants. However, based on prototypes currently 
in development, it is likely that a similar level of 
malleability will be possible with future FOLED-based 
smartphones. Since we assumed the device would be held 
mostly in portrait mode, our apparatus had a higher 
resolution for bends along a vertical axis (Note that this 
assumption was confirmed; more than 75% of all shapes 
were oriented along this axis). 

We initially explored the use of an etched flexible circuit, 
however, this approach was not sufficiently robust to 
withstand extreme interactions such as crumpling the 
device. Instead, we created a soft circuit using neoprene 
as a substrate, with malleable Litz wire as the conductive 
material. Because the wires and sensors were designed to 
move independently of one another and of the substrate, 
there was only negligible stress on the electrical 
connections in this apparatus. This lead to a stable and 
precise measurement tool that was able to withstand all 
deformations created in the experiment. An Arduino 
Mega was used to record the data from each individual 
flex sensor, resulting in a shape sensing device with 11 
degrees of freedom. 

Task and Emotions 
We asked participants to create shapes with the apparatus, 
one for each of a list of emotions. The emotions were 
chosen based on a model by Ekman and Friesen [12] and 

included emotions used in similar studies [3,10]: Anger, 
Boredom, Calm, Confusion, Contentment, Delight, 
Distress, Excitement, Fear, Happiness, Love and Sadness. 
As one of the criteria for selection, all emotions are 
featured in Russell’s Circumplex Model, and together 
cover a broad spectrum of Valence and Arousal levels 
[48]. Participants were allowed to create static shapes as 
well as shape gestures that made use of dynamics. To 
account for potential individual variance in the 
participants’ interpretation of this set of emotions we first 
asked participants to rate the emotions using the Self-
Assessment Mannequin (SAM) method [28]. Participants 
rated emotions on a five-point Valence scale (very 
negative, negative, neutral, positive, very positive) as well 
as a 5 point Arousal scale (very low, low, medium, high, 
very high). 

Participants 
Each participant ranked and performed the same subset of 
emotions. Our 20 participants were between 19 to 30 
years old (Mean = 23.3, SD = 2.83). 9 participants were 
male, 11 female. The majority (18 out of 20) of our 
participants had no previous experience with malleable 
electronic devices. Two participants had some exposure 
through prior laboratory studies. All but one of our 
participants had experience with the use of multi-touch 
smartphones. The study took an hour to complete and 
participants were paid $10 for their efforts. 

Software 
We used two different custom programs: one for running 
and one for evaluating the experiment. The experiment 
software provided the participants with instructions and 
recorded the shapes created by the participants using our 
custom apparatus and via a video camera. Sensor data and 
video data were time-stamped and stored together. 

 
Figure 2. Shape parameters investigated in Experiment 1. 

 



Our analysis software visually overlaid video and sensor 
data, allowing us to match a frame of video to its 
corresponding sensor readings and vice versa. This 
allowed the researchers to visually classify the resulting 
shapes. 

Shape Recording and Analysis 
Since we were interested in evaluating what aspects of 
shape and shape change are most effective in 
communicating emotions, we required a taxonomy of 
shape parameters for analysis. We adapted our shape 
parameters from those outlined by Roudaut et al. [45], 
basing our analysis in those that displayed a significant 
effect. They are: Convexity (Curvature in [45]), Angle, 
Radius, Axis, Granularity, Speed, Area in Motion and 
Amplitude of Motion. These features are illustrated in 
Figure 2. 

a) Convexity 
Convexity described the curvature of the shape. A 
Concave surface curves inward away from the user while 
a Convex surface curves outward towards the user (see 
Fig. 2a). 

b) Angle 
The sensor readings are proportional to the amount of 
bending, i.e., the angle. We therefore calculated the mean 
value of the bend sensors per axis. 

c) Radius 
A bend was described by the size of a circle that inscribes 
it. As the sensors used in the prototype only provide 
information of how much they are bent but not where they 

are bent, we measured radius indirectly by counting how 
many groups of sensors were bent in the same direction 
along the horizontal axis. Due to the lower vertical 
measurement resolution of the device, no radius was 
measured across that axis. 

d) Axis 
The axis was defined as the orientation of the primary 
bend with respect to the apparatus (See Fig. 2d). This 
parameter can take one of four possible values: 
horizontal, vertical, diagonal (when bending along both 
axes) and flat (no bend). Although this value was derived 
from the sensors readings, it was verified for correctness 
by one of the researchers by means of observation of the 
videos. 

e) Granularity 
We used a simplified interpretation of Granularity adapted 
from [45]: the number of bends that constituted the shape. 
We measured this by counting the number of bends in 
opposite directions across each axis. Due to the different 
resolution between horizontal and vertical axis, 
granularity could take values between 0 and 3 and 
between 0 and 2, respectively. 

f) Speed of motion 
The average rate of change of all sensors (see Fig. 2f). 

g) Area in Motion 
The Area in Motion was defined as the surface area of the 
apparatus that was dynamic. We measured the percentage 
of sensors that changed (see Fig. 2g). 

h) Amplitude of Motion 
We referred to the maximum distance of displacement in 
a motion as the Amplitude of Motion. We measured the 
mean difference between the lowest and highest reading 
of all sensors (see Fig. 2h). 

Statistical Analysis 
After the experiment, we correlated the values of these 
shape parameters for the various shapes created with 
those of the Arousal and Valence scores of the emotions 
they were intended to convey. Since Valence and Arousal 
ratings are ordinal, we performed non-parametric ordinal 
correlations on the Valence and Arousal scores. We also 
used a classification algorithm to investigate if it would be 
possible to recognize emotions from the sensor data. 

EXPERIMENT 1: RESULTS 
Figure 3 shows the ratings of discrete emotions by 
participants on a 2D continuum. Each dot indicates the 
mean value for a given discrete emotion. The ellipses 
around a dot represent the standard deviation, separately 
for both the Valence (x) and Arousal (y) dimensions. 

 Figure 3. The Circumplex Model used in our experiment. 
Dots show mean Valence and Arousal scores for discrete 
emotions, ellipses show the area encompassing 1 std. dev. 

 



The resulting distribution of emotions was similar to that 
reported by Russell [48]. However, our participants gave 
Fear and Anger a more negative rating and Excitement a 
more positive rating. Actual resulting scores are presented 
in Table 1. 

Frequently used Shapes 
Observation of the shapes created by the participants 
allowed us to identify some commonly occurring shape 
types across different emotions. Contentment (50%), 
Delight (75%) and Happiness (80%) were often expressed 
using concave U shapes. For Sadness, 60% of participants 
used an “inverted U” shape. Love was expressed with a 
heart shaped fold by 55% of participants. For Anger, 
participants often used a crumpled shape (55% of 
participants). A flat shape was often employed to convey 
Boredom (30%) and Calm (25%) emotions, with 18% of 
participants using an animated sine wave to express Calm 
(10%). We observed that participants did not solely 
interpret shapes based on the body or face, but on other 
metaphors as well. These included water (a wave), facial 
expressions, and body pose (crouching, hiding, jumping, 
clapping). They also aimed at emulating consequences of 
actions (e.g., the crumpled shape created by smashing the 
device in anger). 

Agreement 
We used Wobbrock et al.’s [58] method to measure the 
agreement between participants on commonly used 
shapes for each emotion. The agreement for a certain 
emotion e is given by: 

𝐴" =
𝑃%
𝑃"

&

'(⊆'*

 

Where Pe is the set of all shapes used to represent a certain 
emotion and Pi is the subset of repeatedly used shapes 
from Pe. The agreement A can therefore take values 
between |Pe|-1 and 1. The level of agreement varied 
strongly between emotions, with a mean agreement across 

emotions of 0.24. Agreement rankings for Happiness 
(0.65), Delight (0.56), Sadness (0.37), Love (0.31), Anger 
(0.30) and Contentment (0.28) were relatively high. 
Participants appeared to agree less on how to convey 
emotions such as Boredom (0.13), Calm (0.11), 
Excitement (0.09), Fear (0.02), Distress (0.01) and 
Confusion (0.01). 

Correlation of Shape Parameters with Valence and 
Arousal 
We used a non-parametric correlation (Kendall’s τ) to 
establish which parameters of the shape expression, if 
any, would could be good predictors for Valence and 
Arousal ratings of the associated emotions. Our reasoning 
was that such associations would allow a device to 
classify emotions by measuring deformation. A list of the 
resulting correlations is presented in Table 2. Correlation 
values indicate that parameters related to the shape of the 
surface—Convex/Concave, Angle (Horizontal), Axis 
(Horizontal and Diagonal)—may be good predictors for 
Valence. While some shape parameters also display 
association with Arousal, those parameters related to 
movement (Speed, Area in motion and Amplitude of 
motion) were better predictors—with Axis-Flat indicating 
absence of movement. Additionally, complex 
deformations including both axes (Axis-Diagonal) and/or 
multiple bends (Granularity) seem to be more frequently 
present in emotions with higher Arousal and lower 
Valence. Only Angle (Horizontal) and Radius seem to 
correlate similarly with both Valence and Arousal, while 
Angle (Vertical) did not present a significant correlation. 

Prediction of emotion 
Results indicate that several shape parameters have 
predictive power for the automatic recognition of 
emotion. To investigate this possibility, we used a 
Support Vector Machines (SVM) classifier with a Radial 
Basis Function kernel. A full explanation of SVM is 
outside the scope of this paper [18]. As predictors for this 
classifier, we used the shape parameters that presented a 
significant correlation with Valence and Arousal, as 

 Valence Arousal 
 Mean SD Mean SD 
Anger 1.40 0.60 4.40 0.60 
Boredom 2.50 0.69 1.95 1.10 
Calm 3.70 0.73 1.90 0.91 
Confusion 2.15 0.37 3.20 0.89 
Contentment 3.90 0.64 2.80 0.70 
Delight 4.45 0.51 3.80 0.89 
Distress 1.15 0.37 4.60 0.50 
Excitement 4.60 0.60 4.85 0.37 
Fear 1.25 0.44 3.90 1.55 
Happiness 4.35 0.49 3.65 1.04 
Love 4.80 0.41 4.50 0.76 
Sadness 1.55 0.51 2.65 1.14 

Table 1. Means and standard deviations of Circumplex 
Model of emotion attributes in Experiment 1. 

 

 τ (Valence) τ (Arousal) 

Concave 0.26 0.14 
Convex -0.21 -0.06 
Angle (Horizontal) -0.27 -0.22 
Angle (Vertical) 0.02 0.01 
Radius -0.14 -0.26 
Axis-Horizontal 0.23 0.05 
Axis-Vertical -0.10 -0.21 
Axis-Diagonal -0.17 0.23 
Axis-Flat -0.01 -0.26 
Granularity -0.13 0.21 
Speed 0.00 0.39 
Area in motion 0.05 0.35 
Amplitude of motion 0.00 0.36 

Table 2. Correlations between shape parameters and 
Valence and Arousal. Coefficients in bold are significant at 

p<0.05 

 



indicated in Table 2. We trained the classifier and used a 
10-fold cross-validation method to find the optimal 
accuracy rate. That is, we used 90% of all the recorded 
shapes as training examples. We then tested the resulting 
model using the remaining 10% of the dataset, obtaining 
an accuracy rate. We repeated this process 10 times, each 
time excluding a different 10% the data points. Finally, 
we chose the model parameters that yielded the best 
accuracy rate. The resulting model reported an overall 
Precision of 45.8% (95% CI : (0.34, 0.47)) and Recall of 
40.4%. This means that 45.8% of the recognized emotions 
were true positives, while 40.4% of the input emotions 
were correctly classified. These values yielded a F-Score 
of F=0.431. The emotions that were better recognized by 
our classifier were Sadness (F=0.59), Anger (F=0.56), 
Happiness (F=0.5), Confusion (0.44) and Calm (F=0.43). 

EXPERIMENT 2: INTERPRETING COMMUNICATING 
EMOTIONS 
The goal of our second experiment was to validate 
whether different participants would be able to relate 
shapes from Experiment 1 back to the emotions that 
participants were trying to convey. 

We wanted to capture the shape information of the 
original prototype from Experiment 1, but avoid biases 
that would be introduced by the presence of the 
participants’ hands and body. This way, any expression of 
emotion would be based solely on the shape of the device. 
We therefore selected a representative video (and its 
corresponding sensor recordings) of the shape expression 
with the highest frequency of occurrence for each emotion 
studied in Experiment 1. 

We then built a 3D model using Blender [1], making sure 
it was as similar as possible to the original prototype in 
terms of size, proportions and rigidity. We completed the 

                                                             
1 In information retrieval, the F-score is a standard 
measure of a test’s accuracy, equivalent to the harmonic 
mean of Precision and Recall. 

model by adding a texture map to make it appear as a 
smartphone (see Figure 4). We used a skeleton with rigid 
bones located at the position of the sensors in the input 
device in Experiment 1. Bones were subdivided in 
segments to allow for softer curvatures; they had parent-
child relationships to preserve shape and volume 
coherence. The model was animated by mapping the 
sensor values to rotations of the bones using Python. The 
resulting animated 3D models inherited the shape changes 
that the participants from Experiment 1 applied to the 
shape sensing device. The animations were exported as 
video files. 

Procedure 
We created a questionnaire in which we embedded these 
videos, and made it accessible online. For each of the 12 
animations, participants were first asked to describe with 
a single word what they believed the shape of the device 
shown was trying to communicate. After this, participants 
were shown the animations a second time, and were asked 
to select one of 12 emotions that they thought might 
describe what the shape expressed: Anger, Boredom, 
Calm, Confusion, Contentment, Delight, Distress, 
Excitement, Fear, Happiness, Love and Sadness or, if they 
thought that the shape did not express an emotion, No 
Emotion. Videos were presented in random order. 

 Participants 
Twenty participants were recruited through social 
networks. None of them participated in the first 
experiment. There were 6 female and 14 male participants 
with a mean age of 32.1, (SD: 6.94). 

Analysis 
In their answers, participants had to choose from a 
nominal list of emotion labels. Besides calculating the 
frequency with which they chose the correct emotion 

 
Figure 5. Circumplex Model with mean distance (small dot) 

and std. dev. (circle) of response emotions from mean 
locations (large dot) of stimulus emotions. 

 

 
Figure 4. A frame of one of the videos shown to participants 
for Experiment 2. This 3D model is representing happiness. 

 



label, we also used the coordinates of each label in the 
Circumplex Model in order to obtain a distance measure. 
We calculated the mean position of the response labels 
and the stimulus labels. We used the Valence and Arousal 
ratings obtained from Experiment 1. This gave us an 
(X,Y) coordinate on the Circumplex Model per emotion. 
For each response, we then calculated the Euclidian 
distance between the response emotion and the 
coordinates of the stimulus emotion. All distances were 
measured on a scale from 1-5. We also calculated user 
agreement using the Fleiss' Kappa index (κ). This is a 
standardized method for measuring agreement, similar to 
Cohen’s Kappa, but extended to include more than two 
coders [13]. 

EXPERIMENT 2: RESULTS 
On average, participants recognized the correct emotions 
33.8% of the time, while 12.3% of the time they 
considered that the shape was not conveying an emotion. 
Table 3 shows mean distances and standard deviations 
between the stimulus emotion and participant responses, 
ordered by distance. The mean distance across all 
emotions was 1.42 (SD: 1.60). Overall agreement was low 
(κ=0.18), but agreement in terms of quadrants on the 
Circumplex Model was higher (κ=0.31). Figure 5 shows a 
graphical representation of these distances as lines. The 
larger dots marking the endpoints of these lines are the 
locations of the stimulus emotions (as observed in 
Experiment 1). The small endpoints represent the mean 
location averaged over response emotions in this 
experiment. The ellipses show the standard deviation of 
Valence and Arousal of response emotions, separately 
(note that we decided not to perform further statistical 
analysis of these distances as it was unclear what baseline 
to compare them with: they are provided as qualitative 
evidence).  

DISCUSSION 

Symbolic vs. Dynamic Shapes 
Participants frequently agreed on the use of symbolic 
shape expressions based on a clear visual metaphor. It is 
worth noticing that participants often used a symbolic 
approach when intending to convey certain emotions by 
static shapes, while in other cases, dynamic motions were 
employed. 

This appears to be one of the reasons why Valence is 
more frequently correlated with shape parameters: 
Contentment, Delight, Sadness and Happiness were 
typically represented with a “U” form that was borrowed 
from facial expressions. Their use was similar to that of 
emoticons. We observed that different metaphors 
sometimes lead to the same shape. For example, some 
participants chose a convex shape for Sadness because it 
reminded them of a frown, while others chose a convex 
shape to represent Fear by mimicking cowering body 
poses. A remarkable example of the symbolic approach is 
Love. Although it was rated as having high arousal, it was 

frequently represented with a static heart shape, a 
manifestation of a long visual tradition that is reflected in 
standard emoticons. Crumpling was used as a physical 
metaphor for Anger reflecting destructive action. Similar 
to findings with Wrigglo [35], body shape provided a 
common metaphor. Finally, Confusion appeared to 
consistently have higher granularity than, for example, 
Happiness. We observed that the dynamic approach was 
frequently used to establish emotions along the Arousal 
axis. This ranged from Calm, often represented by a slow-
moving oscillating motions, to Excitement, which most of 
the time included fast motions. Calm and Boredom were 
also frequently represented using flat shapes, so they 
tended to have low dynamics (as well as high angles and 
radius). Another trend we noted is that repetitive motions 
(such as “clapping”, frequent in Excitement) were more 
common for positive emotions. For negative emotions the 
motion was often singular (e.g., one “crunch”). Our 
findings reflect those of Dawson et al. [10], in that the 
dynamics of motion in their study were also often based 
on bodily metaphors, such as rhythmical breathing. 

Predictive Value of Shape Parameters 
Our models seem to confirm that parameters that convey 
Valence appear primarily based on the geometry of the 
shape. Parameters that convey Arousal were primarily 
based on the dynamics of the shape. The strongest 
predictor of Valence was the convexity and angle of the 
curvature across the horizontal axis, while the strongest 
predictors for Arousal were the speed, amplitude and area 
of the surface modified by the gesture. In general, we 
conclude that there does appear to be a significant 
relationship between basic shape parameters and the 
location of the emotions they convey in the Circumplex 
Model. 

An SVM classifier trained with our shape data was able to 
recognize emotions with an acceptable accuracy, although 
the best results were obtained for emotions such as Anger, 
Sadness, Happiness and Boredom. This is probably a 
consequence of the agreement in the use of crumples, 
“inverted U”, “U” and flat shapes, respectively, as we 
previously discussed. This initial effort suggests that it 

 Distance SD κ 
Anger 0.29 0.54 0.27 
Calm 0.52 1.03 0.28 
Sadness 0.55 1.18 0.33 
Confusion 0.68 0.79 0.07 
Boredom 0.83 0.90 0.02 
Distress 0.98 1.81 0.09 
Delight 1.08 1.51 0.04 
Excitement 1.20 2.21 0.41 
Happiness 2.26 1.90 0.04 
Love 2.66 3.22 0.40 
Contentment 2.99 1.78 0.09 
Fear 2.99 2.21 0.03 

Table 3. Mean distance scores in the Circumplex Model of 
emotion attributes in Experiment 2. 

 



would be possible to implement an engine for the 
recognition of bend gestures on a flexible mobile phone. 
These gestures could then be translated into visual 
emoticons, or transmitted to actuated shape devices, as a 
means of tactile-visual emotion communication. Further 
research is needed to shed more light on how to 
implement and optimize such device. 

Interpreting Shapes as Emotions 
Results from Experiment 2 suggest a somewhat lesser 
agreement between participants on how to interpret shape 
expressions as emotions. Participants tended towards 
agreement on scores for Excitement, Love and Sadness. 
Other emotions fell below the 0.3 level of agreement. 
Over all emotions, participants correctly identified only 
33% of stimuli. This is slightly higher than the 30% of 
correctly identified emotions reported by Bailenson [3]. 
Overall agreement in classifying emotions was low, but 
participants had a higher agreement in terms of positive 
vs. negative Valence and high vs. low Arousal. 

Treating emotions as continuous psychological variables 
of the Circumplex Model, rather than as nominal 
categories, provided us with a better method for 
evaluating interpretations. When results are evaluated in 
terms of the distance of the response from the location of 
the stimulus in terms its Arousal and Valence score, 
participants do appear able to judge shape expressions 
with good accuracy. Note that we treat this observation as 
a trend rather than a scientific statement. The average 
error in terms of model distance was relatively small at 
28% (1.42/5). Participants often chose erroneous labels 
that, however, were close to the stimulus label in terms of 
the Circumplex coordinates. Some emotions appeared 
easier to interpret than others: Anger, Calm and Sadness 
trended the most accurate scores. Participants seemed less 
able to distinguish emotions with high Arousal levels. In 
particular, Fear often appeared confused with Happiness. 
Otherwise, there appeared to be a reasonable 
differentiation between distinct emotions. Our results are 
more clearly differentiated than those by Pedersen et al. 
who concluded that almost all shape changes are rated 
with a very low emotional impact around the center of the 
Circumplex Model [39]. Our findings regarding the speed 
parameter also contrast those of Pedersen et al., who 
found little to no effect of speed on user experience. 
However, Pedersen et al.’s shape changes were computer-
generated. By contrast, we played back an actual 
recording of a human shaping the input device. These 
recordings were read by participants in Experiment 2 and 
related back to the original human action, thus 
interpreting human form and motion in ways similar to 
McDonnell et al.’s [30] findings. In general, although 
efficacy varied per emotion, we conclude that it appears 
that the shape changes in our experiment were able be 
interpreted as emotions, at least in terms of the 
Circumplex Model. 

LIMITATIONS 
Our findings were limited by the form factor of the 
apparatus used and may only apply to objects and devices 
with similar dimensions, i.e., that of a large smartphone or 
small tablet. In Experiment 2, we assessed participant’s 
responses to 12 specific shapes recordings, however, 
participants might have responded differently had we 
chosen different shapes. Instead of a physical shape 
changing device, we used an animated 3D model to 
render our shape recordings. While haptic qualities of a 
physical shape changing device would likely affect 
emotion perception, such prototype is still out of reach. 
We note, however, that we focused on visual rather than 
haptic experiences. The realism of the played back 3D 
animations appears, if anything, to have preserved the 
perception of the emotional expression due to the 
conveyance of the original human movement. We 
strongly encourage further exploration of shape 
interpretation on future research.  

Designing Shape-Changing Interfaces 
We hope that our investigations into the parameters of the 
interpretation of shape for the purpose of communicating 
emotions gives some insight into the development of 
actuated shape changing interfaces that allow the 
communication of such features. Our results suggest that 
such interfaces would need to be able to create one or 
more convex and concave curvatures across their surface, 
be able to modulate their actuation speed, as well as be 
able to animate curvatures across their surface. We 
conclude that the communication of emotion through 
shape changing interfaces still represents a significant 
design challenge that requires further study and 
engineering. 

CONCLUSION 
In this paper, we evaluated how shapes and shape changes 
of a 2D flexible surface might be used to convey emotions 
in future shape changing interfaces. We presented two 
experiments, one that investigated which shapes users 
might create with such a surface, and one that studied the 
efficacy of the resulting shapes in conveying a set of basic 
emotions. Symbolic shape expressions based on clear 
visual metaphors were frequently used. In terms of shape 
parameters, we found that the geometry of the shape was 
often used to indicate the Valence of the underlying 
emotion, while the dynamics of shape change were often 
used to convey its Arousal. These results strongly suggest 
that it is useful to treat emotions as areas in a continuum 
in terms of the Circumplex Model, rather than as discrete 
nominal categories. We presented a preliminary approach 
to machine detection of emotion from shape parameters of 
a 2D flexible surface. Our classifier was able to correctly 
recognize 40.4% of the emotions, suggesting that it is a 
line of research worth to be explored. Results from our 
second experiment indicate participants were able to 
recognize emotions given a shape with a good accuracy 
within the scale range used by the Circumplex Model. 



Rather than mislabeling responses as categorical errors, 
by using this Circumplex model, we were able to 
demonstrate that responses were actually within 28% of 
the distance of the actual emotion locations in terms of 
Valence and Arousal, on average. This is a 
methodological improvement over prior work. Although 
efficacy varied per emotion, we conclude that shape and 
shape changes of a 2D flexible surface indeed appear able 
to convey emotions in terms of their underlying 
parameters of Valence and Arousal. This suggests that 
shape changing interfaces may provide a medium for 
conveying emotional communications that is worthy of 
further exploration. 
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