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Figure 1 – Hand approaching and pressing a zPatch: (a) initially, the patch does not detect the hand, (b, c) as the hand  

approaches the sensor, hover is detected, (d, e) once the hand touches the sensor, the exerted pressure is reported. 

ABSTRACT 
We present zPatch: an eTextile patch for hover, touch, and 
pressure input, using both resistive and capacitive sensing. 
zPatches are made by layering a piezo-resistive material 
between silver-plated ripstop, and embedding it in non-
conductive fabric to form a patch. zPatches can be easily 
ironed onto most fabrics, in any location, enabling easy 
prototyping or ad hoc modifications of existing garments. 
We provide open-source resources for building and pro-
gramming zPatches and present measures of the achievable 
sensing resolution of a zPatch. A pressure based targeting 
task demonstrated users could reliably hit pressure targets at 
up to 13 levels, given appropriate feedback. We demon-
strate that the hybrid sensing approach reduces false activa-
tions and helps distinguish between gestures. Finally, we 
present example applications in which we use zPatches for 
controlling a music player, text entry and gaming input. 
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INTRODUCTION 
On-body input sensing has received much attention in HCI. 
For example, wearable sensors have been presented for 
mobile gesture input [34] and on-skin tracking has expand-
ed the interaction space of smartwatches beyond the device 
[18]. These input techniques and technologies typically 

focus on lateral interaction across the body: Though taps, 
swipes and multi-touch may be used, it is their spatial dis-
tribution across the surface plane that received the most 
attention. 

When interacting on the body, pressure and touch-dynamics 
are especially interesting, as we perceive the interaction 
both with the active hand and the passive body part that is 
being touched [22]. The way in which we might interact 
with our body is also very likely to be more complex [42] 
than could be detected by a simple touch-position sensor.  

We have therefore designed zPatches: small fabric sensor 
patches that can be sewn or ironed onto existing clothing. 
zPatches are designed to maximize sensing capabilities to 
capture the dynamics of on-body touch interaction. zPatch-
es use a hybrid sensing approach: capacitive sensing ena-
bles the measurement of approach behavior and hover in-
teractions, while resistive sensing provides robustness and 
high-resolution pressure measurements.   

zPatches are designed to be simple to manufacture and de-
ploy. This simplicity does not come at the cost of sensor 
performance: using both sensing modalities of a zPatches 
provides it with the ability to distinguish between different 
input gestures. Additionally their hybrid sensing approach 
can be used to reduce false activation problems [14] typi-
cally associated with fabric sensors.  

zPatches are not only easy to build, but also simple to de-
ploy. They can be sewn or ironed onto garments, allowing 
for individual customization. They can also be attached 
with safety pins for fast prototyping.  

We make the following contributions: (1) a simple work-
flow as well as instructions and open source code for novic-
es and experts to create similar textile sensors; (2) evalua-
tions of the fidelity zPatch and a demonstrate of how hybrid 
sensing can reduce unintentional activation and improve 
gesture classification; and (3) example applications of 
zPatches, including a music player, text entry, and gaming.  
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RELATED WORK 
We present an eTextile sensor that enables proximity-, 
touch-, and pressure-based input on the body. While touch, 
proximity [16] and pressure [31] have been explored in 
rigid devices, our primary interest is to develop a platform 
that allows for their transfer on to the body. Our research 
draws upon in eTextile sensing and craft, and is inspired by 
our proprioceptive, kinesthetic and tactile perception.  

Haptic Physiology 
Our body provides us with a rich feedback channel for 
touch interactions. We can sense the location of a touch 
within around 2mm for the hands and face and around 
10mm on most other parts of the body [22,43]. The tactile 
sensitivity of the skin has been measured to be around 
0.07g for the face and hands, ~0.4g for the arms, and ~1g 
for the legs [1]. We present a system focusing on the latter 
feedback channel. Additionally, we benefit from the propri-
oceptive resolution of our body in understanding how our 
limbs are arranged relative to each other [19]. This may be 
of advantage for on-body hover interactions.  
On-Body Sensing in HCI 
Much of the existing on-body input research has focused on 
interacting around smartwatches (e.g.,[20]) as they provide 
both close-by visual feedback and a convenient housing for 
sensors. Prototypes have demonstrated the feasibility of IR 
sensors [18,24,36], capacitive touch [23], magnetic tech-
niques [10], as well as approaches that send electrical [45] 
or ultrasonic [21] signals through the body for on-body in-
put around smartwatches.  

Further work has explored camera-based tracking for inter-
action [35,40]. Harrison demonstrated a device that allowed 
tapping input on the skin [12] and using computer vision 
expanded this work for general on-body input [11]. 

Others have moved interfaces even closer to the body by 
integrating sensing capabilities in make-up [7], beauty 
products [39], or temporary tattoos [38]. The latter were 
also explored by Weigel et al. [41], who demonstrated a 
series of applications for thin devices worn on the skin.  

Our work situates itself in yet another approach to on body 
input: integrating sensing capabilities in the textiles of our 
clothing. 

eTextile Sensors 
Clothing provides a convenient location for sensor place-
ment. This has led to the integration of various sensors into 
fabric, including stretch [37], biometric [25], touch [26,30], 
pressure [6], and even optical sensors [13]. Most eTextile 
approaches however are based around either capacitive or 
resistive sensing. 

Capacitive eTextiles 
A fabric keypad was one of the earliest demonstrations of 
capacitive eTextiles [26]. GesturePad presented a similar 
concept to demonstrate capacitive sensing around the body 
[32]. More recently, with Project Jacquard, conductive 
threads have been woven into textiles [30], enabling mass 

manufacturing of capacitive sensors. Indeed, this technique 
has already been used in a first product, in the form of a 
Levi’s Jacket [47].  

While these systems can be used to detect hover or near-
sensor in-air gestures, they are primarily used for touch 
detection. A notable exception is work by Cheng et al. [3] 
which measures changes in the capacitance of the human 
body to infer the user’s movements. We expand upon this 
work by exploring gestural input above the sensor. 
Resistive eTextiles 
More recently, pressure sensitive fabrics have also gained 
attention. For example, Roh et al., Donneaud et al., and 
Zhou et al. have explored pressure sensitive textiles, but 
primarily on rigid surfaces [5,33,46]. Although their sens-
ing abilities are promising, research has shown the perfor-
mance of users interacting with sensors worn on the body to 
be half as fast than on a rigid surface. Users cited task com-
pletion strategies that included ‘holding ones breath’ [14].  

Parzer et al. demonstrate a general purpose elastic textile 
sensor for input on furniture, and show its applicability to 
the body [27]. Wearable pressure sensors have also been 
explicitly designed for on-body gesture input on the arm 
[34] thigh [14]. Here, however, pressure was used to infer 
touch position. Yoon et al. present a finger-worn textile 
used for gesture detection. Parzer et al. [28] also expand on 
the typical gesture vocabulary by adding fabric-deformation 
gestures. Continuous pressure as an input modality for 
eTextiles on the body has, however, received comparatively 
little attention. We add to this work by exploring this pres-
sure dimension. 

Robust and Hybrid Sensing 
We use the term ‘hybrid sensing’ to describe sensors that 
combine two distinct information channels. This can pro-
vide additional information about dynamics of movements, 
or improve the robustness of the sensor [8]. Such a hybrid 
textile was presented by Wicaksono and Paradiso [44]. Us-
ing seven functional and two layers of non-functional fab-
ric, they measure up to four modalities simultaneously. 

Hybrid sensing was also used in iSkin to distinguish be-
tween two levels of pressure input [41]. A similar approach 
was used in the ‘one button recognizer’ to distinguish be-
tween different people based on button-push-dynamics  
[29]. Hybrid sensing has applications beyond improving 
input-resolution – an alternative use was presented by Freed 
and Wessel who demonstrated that hybrid sensing could 
improve robustness to electrode deterioration [8]. 

Robustness is a limitation of current fabric sensors. For 
example, Heller et al. [14] demonstrated that task comple-
tion time doubled when a soft sensor was moved from a flat 
surface on to the body. Heller and others also presented 
systems such as Pinstripe [17] and Grabrics [2] which by-
pass this problem by requiring explicit pinch or rub ges-
tures. 

Demo Session 1: Textile, Light, 
and Shape Changing Interfaces TEI 2018, March 18–21, 2018, Stockholm, Sweden

189



Hybrid sensing helps us address the robustness problem 
noted by Heller [14]. Hybrid sensing also enables us to in-
fer additional information about the input gesture, similar to 
the work by Pohl et al. [29] and as suggested by Cheng et 
al.[4]. Finally hybrid sensing enables combined touch and 
hover interactions [16] using zPatch. 

WHAT IS A ZPATCH? 
A zPatch is a thin, soft, iron-on textile patch, similar to 
patches used to cover a torn garment or show off one’s fa-
vorite band (Figure 2). zPatches provide users with an input 
channel to control an app on their phone or a remote IoT 
device with their day-to-day clothing. We envision a user 
might buy a 10 pack of zPatches and iron them on their 
jacket, backpack, or jeans. The user would then train it to 
detect a set of gestures of their choosing. This supports nov-
ices to effortlessly augment their clothing and customize 
their input methods.  

zPatches can either have a single sensor (as seen in Figure 
2) or a sensor cluster (Figure 6, Figure 12c). A single sensor 
zPatch already supports a rich set of interactions. It pro-
vides capacitive proximity and resistive pressure sensing, 
with which complex gestures can be built through temporal 
patterns of interaction.  

A zPatch with a cluster of sensors (Figure 6, Figure 12c), or 
multiple zPatches placed in proximity of each other (Figure 
12a, b), provide a three-dimensional interaction space – 
adding the opportunity of spatial interaction in the x and y 
dimension in addition to the temporal patterns of approach 
behavior and pressure. 
Benefits of zPatch design over Similar Sensors  

a) Low Complexity 
zPatches use two analog input pins and require no addition-
al hardware. Thus, the mechanical and electrical complexity 
is low. This enables easy incorporation of zPatches into 
garments and simple interfacing to existing microcontroller 
platforms. 

The manufacturing technique used for zPatches is less 
complex than yarn-based approaches, such as Jacquard 
[30], but can still be used to achieve professional-standard 
results [9]. Compared to Wicaksono’s eTextile keyboard 
[44], the approach presented in this paper uses 3 functional 
fabric layers instead of 7, increasing its robustness and 
making it easier for novices to replicate. 

b) Resolution in the Z Axis 
Various pressure based textile sensors exist in the research 
[14,27,34] and DIY community [5,15]. These sensors are 
typically used to infer the location of pressure events. 
zPatches do not provide position information, however, 
unlike most existing solutions they are optimized for inter-
action along the z Axis. 

c) Continuous Hybrid sensing in a Soft Circuit 
Freed et al. [8] and Pohl et al. [29] presented rigid hybrid 
sensors that capture continuous input. Unlike their imple-

mentations our sensors are soft and can easily be integrated 
into garments. The on-skin sensors by Weigel et al. provide 
a similar soft form factor, however they do not offer the 
continuous proximity and pressure sensing of zPatch. 

d) Improved resistivity to noise and improved gesture 
detection through Hybrid Sensing 

Hybrid sensing provides the potential for discarding many 
forms of false activation. Typically, one would expect input 
from the two data sources to be correlated (Figure 3, com-
pare also Figure 9). If they are not correlated, one might 
discard such activation as noise: for example, if one bumps 
into an object the resistive sensor is triggered, but without 
finding the expected approach behavior in the capacitive 
readings. 

 
Figure 3 – Typical readings for (a) single-tap, (b) double-tap, (c) 

slow release. Resistive measures are yellow, capacitive blue. 

While correlated, the two signals measure different things: 
Capacitive sensing captures the release and approach be-
havior, while pressure sensing provides an accurate meas-
ure once the sensor is touched. When attempting to distin-
guish between different input methods, this can be of ad-
vantage (Figure 3). For example, a regular tap (Figure 3a) 
can be distinguished from a tap where the finger lingers 
after the action is completed (Figure 3c). Actions with a 
temporal pattern (such as a double tap) can easily be identi-
fied on both sensing channels (Figure 3b).  

BUILDING ZPATCH 
The design of zPatches and the code used are open source. 
Here we present a quick overview. In depth documentation 
can be found online. Links to step by step instruction and 
code are available on the projects GitHub repo1 

1 https://github.com/fkeel/zPatch 

 
Figure 2 - A pack of zPatches with regular  

Denim patches in the background. 
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Materials 
zPatches are designed with simplicity and versatility in 
mind. They are simple to construct using a layering tech-
nique (as seen in Figure 4a-c).  

zPatches use 3 materials (Figure 4a-c and Figure 5): The 
center layer of a sensor consists of non-woven resistive 
fabric by Eeonyx (20kΩ/□). Mechanically it behaves simi-
larly to very dense felt. Electrically it is piezo-resistive: 
when compressed, its resistance decreases.  

 
Figure 5 – Cross Section of zPatch 

The resistive material is sandwiched between two conduc-
tors made of ‘Bremen’ ripstop by Statex, a silver-plated 
polyamide fabric with < 0.3Ω/□ surface resistivity. The 
conductive fabric is crimped to standard headers. 

For mechanical stability, these three layers are encased in 
non-conductive textiles. Any non-conductive textile can be 
chosen, allowing the sensors to be tailored to the target 
garment. To optimize our sensors, we chose a very thin 
polyester mesh as the top layer (visible in Figure 5c). The 
mesh allows direct contact between finger and conductive 
material. This improves the robustness of touch sensing, 
and allows visual inspection of the underlying electrodes. 
The sensors also work with non-mesh material. We chose a 
relatively strong cotton fabric as a backing, to provide 
structural support and to lift the sensor off underlying skin.  

The individual layers are heat-bonded: A sheet of double-
sided fabric glue (interfacing) is placed between the layers 
one wishes to fuse, and subsequently heated and com-
pressed using a household iron. Note that there should be 
no glue between the resistive and conductive materials, 
because this degrades the sensor performance.  

Process 
Sensor layouts can be designed in any vector-based applica-
tion (we used Adobe Illustrator). Those designs are laser-
cut on an Epilog Helix 60Watt laser cutter (Figure 4a). The 
Eeonyx resistive material was directly placed in the laser-
cutter without any special preparations and cut at 50% 
speed, 9% power and 5000Hz.  

The conductive ripstop was first fused to a layer of double 
sided interfacing which is fused to wax paper. The wax 

paper was then glued to an acrylic sheet. This made the 
conductive material act rigid, dispersing worries of the air-
flow in the laser-cutter moving it while it is being cut. Here, 
we set the power of the laser-cutter to slightly engrave the 
acrylic underneath (50% speed, 20% power, 5000Hz).  

Once cut the conductive material can be simply peeled off 
the acrylic. The laser-cutting process has the additional 
benefit that it seals all the cuts, preventing the fabric from 
fraying. This makes the fabric easier to work with than it 
would be if cut by a knife or scissors. Once all materials are 
cut, crimp connectors are added, the materials are fused 
together, layer by layer using double sided interfacing. 

Configuring the microcontroller 
zPatches have two symmetrical connectors – the orientation 
with which they are attached to a microcontroller is irrele-
vant, if both are connected to analog input pins. zPatches 
work by taking advantage of the multiple ways a microcon-
troller pin can be configured. The pins are configured to 
measure capacitance2 and resistance alternatingly. Code 
examples ready to upload to an Arduino can be found on 
our GitHub page1.  

Multi-Sensor Synergies 
zPatch configurations with more than two electrodes are 
also possible. In fact, combinations allow for increasing the 
spatial resolution beyond their sum: Figure 6a and 12c 
shows a layout in which four electrodes allow us to infer 
pressure from nine locations, based on common activation. 

Flexibility with pin-configurations allows us to minimize 
complexity of such sensors. For example, the four elec-
trodes shown in Figure 6a, can be pulled low sequentially 
and the voltage can be measured by a shared electrode at 
the bottom. In the depicted setup (also seen in Figure 12c), 

2 Code adapted from http://playground.arduino.cc/Code/ADCTouch 

 
Figure 4 – (a) Laser-cut conductive fabric, (b) assembling the sensor, (c) fusing the textile to form a zPatch, (d) zPatch in Action. 

 
Figure 6 – (a) 4 sensors used to generate 9 touchpads as used 
in our text-input demo and (b) differential pressure sensor as 

used for our music-player demo. 
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pressure can be measured at nine locations with a single 
analog input – however as all electrodes are electrically 
connected they act as a single capacitive sensor. 

The layout in Figure 6b (also seen in Figures 12a and 12b) 
enables differential pressure sensing. By connecting the two 
visible electrodes to +5v and GND and reading from the 
bottom electrode, we measure 2.5v. If a finger is placed in 
the center of the zPatch, that voltage does not change 
(though we can detect the finger’s presence through the 
capacitive readings. If the finger is rolled towards the posi-
tive or negative electrode the measured voltage will rise or 
sink accordingly. 

EVALUATING ZPATCH 
We conduct a range of evaluations of zPatch. First, we re-
port on the sensing resolution of zPatches. Consequently, 
we report initial findings of a targeting task. We demon-
strate that, with this resolution, we can support multi-item 
menu selection with pressure alone. Finally, we demon-
strate that hybrid sensing improves the performance of a 
Random Forest algorithm for gesture classification and 
false positive reduction.  

Sensor Performance 

Resistive Sensing 
We placed weights on our sensor to better understand how 
it reacts to pressure changes. We found the sensor could 
detect pressure of < 1.38 Pascal (5g with 3.5cm2 area). We 
incremented the weights until 829 Pascal (3kg with 3.5cm2 
area) and found that between ~10 Pascal and ~275 Pascal 
the change in weight had an exponential relation to the 
change in resistance (R2 = 0.95). Readings were incon-
sistent below, and flattened out above this range. 

Capacitive Sensing 
We placed and calibrated a zPatch in 3 positions relative to 
a user, to measure the signal response to the user’s open 
palm. The zPatch was taped directly on the user’s left arm 
(Figure 7, blue), attached to the left arm of a hoodie worn 
by that user (Figure 7, orange) and placed on a table in front 
of the user (Figure 7, green). We fixed the position of the 
left arm and varied the position of the right palm with a 
plexiglass spacer. Once the sensor was placed in its intend-

ed position we set the current capacitive reading as its base-
line. We then measured the signal when the right palm was 
0.2, 0.5, 1, 1.5, 2, 3, 4, 5, 10 and 20cm away from the 
zPatch. Figure 7 shows 50 samples of each combination of 
position and distance. The samples represent change in ca-
pacitance from the baseline.  

Our measurements show that proximity to the skin impedes 
the sensing capabilities of the sensor. Additionally, when 
placed directly on the body, the signal becomes extremely 
sensitive to the slightest movements of the textile relative to 
the body, as seen in Figure 7 on the right. The change in 
response based on placement makes it difficult to correctly 
infer proximity. The size of the sensor influences the ability 
to sense proximity as well - the larger the sensor area, the 
more sensitive it becomes. However, while the absolute 
readings of the capacitive sensor are inconsistent, even 
when placed directly on the skin, hover and approach dy-
namics are observable. 
Input Performance 
While we assume the primary use of capacitive sensing will 
be in hover detection and gesture classification, we specu-
late that on-body pressure input could also be used for nav-
igating menus and target selection. We therefore present an 
evaluation of user input performance in a targeting task. 

We recruited 11 participants (all students, 1 female. Age: M 
= 26.5, SD = 5.24) for a targeting task (Figure 8a). Partici-
pants wore a hooded jacket with 8 integrated sensors (stom-
ach, wrist, biceps, sternum, shoulder, back of hand, palm, 
and temple). They were shown a 700 pixel vertical linear 

 
Figure 8 – (a) participant during the experiment (the UI was shown in front of them on a screen) (b), interface presented to user 
with single target, (c) target positions as calculated based on observed distributions (if users were to aim for the 5th target, we 

would expect 95% of all hits to fall within the highlighted area), (d) density plot of all observed distributions by target. 

 
Figure 7 – 50 sample measures at 0.2 (darkest), 0.5, 1, 1.5, 2, 3, 

4, 5, 10 and 20cm (lightest). Y axis is the change in capaci-
tance, as measured using the code we provide. 
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slider. The cursor of the linear slider had its resting state at 
the top, and it moved towards the bottom with increasing 
pressure (Figure 8b). Participants were shown one-pixel 
targets and were instructed to move the cursor to the target 
as fast and precisely as possible. 

We linearized the output of the sensor, and then calibrated 
each sensor per participant: We asked each participant to 
provide us with a minimum pressure (gentle touch) and 
their maximum comfortable pressure. These were set to the 
values 0 and 700. Pressure levels in between were mapped 
to the 700 point range proportionally, corresponding to the 
700 pixels of the vertical slider. 6 targets were placed with 
100 pixel distance from minimum, maximum and each oth-
er. Participants repeated each target 3 times 

We collected a total of 1584 (11 Participants × 8 Locations 
× 6 Targets × 3 Repetitions) measures as offsets from their 
intended target and found that, on average, participants 
missed the target by 8 pixels (M = 8.95, SD = 9.56). Partic-
ipants tended to overshoot (M = 9.00, SD = 9.88) more than 
undershoot (M = 6.55, SD = 8.38). Figure 8d shows the 
density functions of all trials by targets.  

Based on our observed distribution of targeting offset, we 
calculated that we could correctly classify 95% of all trials 
if the targets were placed every 50 pixels (Figure 8c), 98% 
with a spacing of 73 pixels and 99% with targets every 85 
pixels. Dividing the total pixel range by the calculated tar-
get spacing suggests that our sensor can accommodate 13, 8 
or 7 targets, depending on acceptable classification error.  

Our initial evaluation leaves many questions regarding the 
psychophysics of pressure perception and human input, as 
well as gender variation regarding on body interaction un-
answered. While more detail is beyond the scope of this 
paper, we hope that future research will investigate these 
questions. The current study demonstrates that zPatches can 
be a useful tool for such explorations. 
Hybrid Sensing to Improve Robustness 
We imagine that if zPatches were a product, the included 
software might allow users to train the patch to recognize a 
set of gestures and how they perform them. To demonstrate 
that hybrid sensing can help reduce false activations and 
improve gesture recognition, we implemented such a sys-
tem. We roughly follow an approach presented by Pohl et 
al. [29]. Note that we merely use machine learning as a 
demonstration of the benefits of hybrid sensing, the follow-
ing example is by no means optimized. 

Data Collection 
We collected data from 10 participants. They were given a 
box that had a sweater tightly stuffed inside. The sweater 
had a zPatch attached. Participants followed instructions 
presented on a laptop screen. The data was collected in 
three phases: 

1) Participants removed the sweater from the box and de-
pending on condition either wore it or placed it on a table. 
During this period ‘noise’ was recorded. 2) Participants 
were then instructed to perform either a hover, swipe, gentle 
tap, strong tap or push gesture. Participants performed each 
gesture 10 times, whenever the screen changed color. In 
between these explicit inputs a random number of 2 to 4 
‘noise’ trials were recorded. These were used to add addi-
tional variation to the ‘noise’ class.  3) Participants were 
instructed to place the sweater in the box. During this peri-
od additional ‘noise’ data was recorded.  

This process was repeated 10 times, so that all 5 input types 
were performed both on the body and on the table. Partici-
pants did not receive any training or specific instructions on 
how to perform the gestures. Data was continuously record-
ed and split into 60 sample frames which were labeled ac-
cording to when they were measured. 

Raw Dataset 
This resulted in an intentionally noise dataset containing 
many ‘false activations’ from moving the sweater. The 
‘hover’ gesture was included to have an edge case which 
we anticipated to be difficult to detect. The ‘swipe’ gesture 
was included to see if lateral movement could also be cap-
tured through the approach behavior. All gestures were de-
signed to be relatively similar – as opposed to, for example, 
comparing single- and double-tap.  

We trimmed the dataset to 400 measures per participant, of 
which ~300 were ‘noise’ and the remaining ~100 were 
evenly distributed among the remaining classes. Each 
measurement contained 60 resistive and 60 capacitive  
samples. A visualization of the raw data3 can be found in 
Figure 9. 

Features & Final Datasets 
We chose to extract 7 features describing the signal enve-
lope: Attack (max change between two readings at begin of 
touch), Release (max change between two readings at end 

3 The data can be found at https://github.com/fkeel/zPatch/tree/master/data 

 
Figure 9 – Raw data sorted by class: (a) noise, (b) hover, (c) swipe, (d) gentle tap, (e) strong tap, (f) push. Reds are capacitive 

measures, blues are resistive measures. For visualization purposes measures are aligned so that the largest negative change in re-
sistance lines up. Consequently, the average of the first 5 readings was set to zero, per measure type. Finally, resistive and capaci-

tive measures were slightly vertically offset to reduce overlap. Each image shows 200 measures per sensing method.  
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of touch), Sustain (distance in samples between attack and 
Release) and Maximum, MaxTime (distance in samples be-
tween attack and Maximum) Minimum and MinTime (dis-
tance in samples between attack and Minimum). 

We created a dataset using only resistive measures, a da-
taset using capacitive measures and a ‘hybrid’ dataset 
which contained both sets of features (all ‘distance’ 
measures were put in a shared frame of reference) addition-
ally we added the difference between the resistive and ca-
pacitive measures as features. 

Results  
We used Random Forest in Weka (with default settings) to 
classify the data. We validated our approach per participant 
using 10 fold cross validation. The weighted F-Measures 
show that the resistive data performed worst followed by 
the capacitive data while the hybrid data performed best 
(see Table 1). 

We were particularly interested in the effect of the datasets 
on the instances of false activation, specifically, noise clas-
sified as a gesture. We found the most instances of noise 
classified as a gesture in the resistive data (M: 7.2, SD: 
3.42) followed by the capacitive data (M: 4.5, SD: 2.16). 
Again, the hybrid data performed best (M: 3.5, SD: 2.57). 
Figure 10 shows a confusion matrix of the sums of results. 

To see if the results would generalize to new participants, 
we re-analyzed them as a whole, again using 10 fold cross 

validation. This time the data was split such that each fold 
trained on nine participants and tested on the tenth. While 
the results were less convincing then for the per-person 
training, we observed the same trends and the data general-
ized relatively well, weighted F-Measure were 0.84 for the 
resistive data, 0.86 for the capacitive data and 0.89 for the 
shared data.  
 W. F-Measure Precision Recall 
 Mean SD Mean SD Mean SD 

Resistive 0.89 0.03 0.89 0.04 0.90 0.03 

Capacitive 0.93 0.01 0.93 0.01 0.94 0.01 

Shared 0.95 0.02 0.95 0.02 0.95 0.02 

Table 1 – Summarized results of per person cross validation 

DISCUSSION 
zPatch is a hybrid sensor, providing both resistive and ca-
pacitive measures. Viewing the raw-data output we receive 
from either channel, the resistive readings immediately ap-
pear useful, we demonstrate participants can select from 13 
pressure levels with 95% accuracy. The capacitive readings 
on the other hand are ‘all over the place’. The extent to 
which their output varies based on context is a clear limita-
tion of their utility as a continuous, absolute input channel. 
If we focus on discrete rather than continuous input, the 
situation changes. When classifying gestural input, the ca-
pacitive sensing outperforms the resistive sensing.  

What we wish to demonstrate, however, is that the two ap-
proaches are complimentary and that best performance is 
achieved by utilizing the hybrid nature of zPatch. It should 
be noted that hybrid sensing not only benefits from addi-
tional data, but that the relationship between the resistive 
and capacitive measures provides additional information 
not contained in either data source. For example, using cor-
relation based feature selection, three of the top five predic-
tors of our ‘hybrid’ dataset were the Difference in Sustain, 
the Difference in Attack and the Distance between Attack of 
the two signals. The remaining two were Attack of resistive 
measures and Release of capacitive measure. 

The benefit of adding the difference in signal as feature can 
be seen in Figure 11. While Attack (x-axis) is the strongest 
predictor of the resistive measures, it alone still does not 
lead to a strong result. Paired with the Difference in Attack 
(y-axis) we can see clear clustering in the data. 

 
Figure 11 – Scatterplot of two features on complete dataset 

 
Figure 10 – Cumulative classification results using Random Forest and 10 fold cross validation on each participant, by dataset.   
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APPLICATION SCENARIOS / DEMOS 
We present three demos of zPatches in use. All sensors 
were sampled using Arduino Nanos, the data was received 
and processed by a C# application, and events were for-
warded either to custom iOS applications or in the form of 
system-level input events (e.g., key presses/mouse clicks). 
Please refer to our Video Figure for full demonstration. 
Combining Multiple Input Modalities 
To demonstrate how multiple input modalities can be com-
bined, we present a music player using two zPatches placed 
on a hat. Each zPatch features a differential sensor (see 
Figure 12a, b). Playing, pausing and stopping the currently 
selected song is controlled by hover gestures: to pause mu-
sic (and thus hear the environment), users simply raise their 
hand to their ear; to resume the music, they then lower the 
hand again; to fully stop the music, they instead move their 
hand backward. 

Controls for volume (front zPatch) and track selection (back 
zPatch), are based on pressure input. Differential pressure 
sensing, through rolling the finger forward or backward, 
allows for adjusting values: rolling the finger forward in-
creases volume/skips to the next track, and rolling it back-
ward does the opposite.  

Interpolation & False Positive Removal  
To demonstrate a) capacitive sensing for avoiding false 
activation, b) interpolated pressure sensing and c) item se-
lection using pressure for navigation, we present a sweat-
band that can be used to provide text input for a smart-
watch. The sweatband has a zPatch with a cluster of four 
sensors (2 × 2 matrix), which allows for nine discrete touch 
areas (i.e., buttons in a 3 × 3 grid) by sensing touch and 
pressure on different combinations of patches (see Figure 
12c). We present a multi-tap4 text entry variation: users 
select letters by adjusting the pressure level. The currently 
selected character is shown on the smartwatch. Once users 
are satisfied with their selection, they quickly release the 
pressure. 

When putting on the sweatband or when the sweatband is in 
contact with other objects, changes in pressure are meas-
ured. We can distinguish between such pressure and inten-
tional input through the secondary information provided by 
capacitive sensing - character selection is only possible 
when a touch is also present.  

4 https://en.wikipedia.org/wiki/Multi-tap 

Easy customization  
To show off the ease with which zPatches can be used to 
prototype interactions, we present a gaming scenario: Users 
can customize gaming experience by changing the location 
of zPatches. For example, mapping a steering mechanism to 
zPatches attached to a user’s socks dramatically changes 
both the difficulty of the game and the attentional focus of 
the player. 

We designed a system for controlling applications on a 
large display. We used a Unity sample (SpaceShooter5) to 
demonstrate our approach. We use three zPatches: one con-
trolling the firing mechanism, and two for steering the 
spaceship left and right. Placements were chosen ad-hoc 
while filming. The first setup used zPatches on either 
shoulder (for steering left and right - see Figure 12d), and 
one zPatch in a sock underneath the foot to trigger firing. 
Another setup explored the firing mechanism attached on 
the chest (Figure 12e), and one zPatch for steering under-
neath each foot. 
CONCLUSION 
We presented zPatches: iron-on eTextile patches with hy-
brid resistive/capacitive sensors that capture multiple sens-
ing modalities. This enables us to design general purpose 
sensing patches that can be used for various interaction 
techniques. We also demonstrated the fabrication process 
and strategies for combining individual sensors to create 
clusters with more complex functionality. We presented an 
evaluation showing that approach behavior can be detected 
even if the zPatch is placed directly on the skin and that, 
given appropriate feedback, pressure can be used to select 
from up to 13 targets using our sensor. We also show that 
the hybrid sensing approach improves the ability to distin-
guish between gestures and can reduce false activations. 
Finally, to demonstrate the versatility of zPatches, we pre-
sented three example applications. 
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